Faculty

中文       Go Back       Search
Zhaoying SHI
Research Assistant Professor
shizy3@mail.sustech.edu.cn

Self-introduction

Dr. Zhaoying Shi is a Research Assistant Professor at Southern University of Science and Technology (SUSTech). His research is centered around developmental biology and functional genomics. Employing Xenopus as the primary model, his studies explore the mechanisms of zygotic genome activation, resolution of three-dimensional genome higher-order structures, construction of human disease models, and the development and optimization of genome editing methods. Dr. Shi has published research articles in top peer-reviewed journals, including Nature Genetics, PNAS, Cell Reports, and others.


Research Interests:

◆ Identification of maternal factors regulating zygotic genome activation;

◆ Mechanism of embryonic lethality induced by embryo hybridization;

◆ Functional identification of genome-wide regulatory elements;

◆ Mechanism of the regulation of Xenopus regeneration ability;

◆ Development and optimization of gene editing techniques.


Professional Experience:

2023.11-Present, Research Assistant Professor, School of Life Sciences, Southern University of Science and Technology;

2023.01-2023.10, Senior Research Scholar, School of Life Sciences, Southern University of Science and Technology;

2014.09-2018.08, Assistant Researcher, Department of Biology, Southern University of Science and Technology;

2013.07-2014.08, Research Intern, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences.


Educational Background:

2018.9-2022.12, Ph.D., College of Life Science and Technology, Harbin Institute of Technology (Joint Training Program with Southern University of Science and Technology);

2010.9-2013.07, M.D., College of Animal Science, Guizhou University;

2006.9-2010.07, B.S., College of Animal Science, Guizhou University.


Selected Publication:

[1] Shi, Z. #, Liu, G. #, Jiang, H. #, Shi, S., Zhang, X., Deng, Y., Chen, Y. Activation of P53 pathway contributes to Xenopus hybrid inviability. Proc Natl Acad Sci USA., 2023, 120(21): e2303698120.

[2] Shi, Z. #, Xu, J. #, Niu, L. #, Shen, W. #, Yan, S. #, Tan, Y., Quan, X., Cheung, E., Huang, K., Chen, Y., Li, L., Hou, C. Evolutionarily distinct and sperm-specific supersized chromatin loops are marked by Helitron transposons in Xenopus tropicalis. Cell Rep, 2023, 542(3): 112151.

[3] Shi, Z., Jiang, H., Liu, G., Shi, S., Zhang, X., Chen, Y. Expanding the CRISPR/Cas genome-editing scope in Xenopus tropicalis. Cell Biosci, 2022, 12(1): 104.

[4] Ran, R. #, Li, L. #, Shi, Z. #, Liu, G., Jiang, H., Fang, L., Xu, T., Huang, J., Chen, W., Chen, Y. Disruption of tp53 leads to cutaneous nevus and melanoma formation in Xenopus tropicalis. Mol Oncol, 2022.15(19): 2554-67.

[5] Niu, L. #, Shen, W. #, Shi, Z. #, Tan, Y., He, N., Wan, J., Sun, J., Zhang, Y., Huang, Y., Wang, W., Fang, C., Li, J., Zheng, P., Cheung, E., Chen, Y., Li, L., Hou, C. Three-dimensional folding dynamics of the Xenopus tropicalis genome. Nat Genet, 2021, 53(7): 1075-87.

[6] Shi, Z. #, Xin, H. #, Tian, D. #, Lian, J., Wang, J., Liu, G., Ran, R., Shi, S., Zhang, Z., Shi, Y., Deng, Y., Hou, C., Chen, Y. Modeling human point mutation diseases in Xenopus tropicalis with a modified CRISPR/Cas9 system. Faseb J, 2019, 33(6): 6962-8.

[7] Hu, Z. #, Wang, L. #, Shi, Z., Jiang, J., Li, X., Chen, Y., Li, K., Luo, D. Customized one-step preparation of sgRNA transcription templates via overlapping PCR Using short primers and its application in vitro and in vivo gene editing. Cell Biosci, 2019, 9: 87.

[8] Sun, J., Wang, X., Shi, Y., Li, J., Li, C., Shi, Z., Chen, Y., Mao, B. EphA7 regulates claudin6 and pronephros development in Xenopus. Biochem Biophys Res Commun, 2018, 495(2): 1580-7.

[9] Hu, Z., Shi, Z., Guo, X., Jiang, B., Wang, G., Luo, D., Chen, Y., Zhu, Y. S. Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells. Cell Biosci, 2018, 8: 12.

[10] Shi, Z., Tian, D., Xin, H., Lian, J., Guo, X., Chen, Y. Targeted integration of genes in Xenopus tropicalis. Genesis, 2017, 55(1-2).

[11] Liu, Z., Cheng, T. T., Shi, Z., Liu, Z., Lei, Y., Wang, C., Shi, W., Chen, X., Qi, X., Cai, D., Feng, B., Deng, Y., Chen, Y., Zhao, H. Efficient genome editing of genes involved in neural crest development using the CRISPR/Cas9 system in Xenopus embryos. Cell Biosci, 2016, 6: 22.

[12] Wang, F. #, Shi, Z. #, Cui, Y., Guo, X., Shi, Y. B., Chen, Y. Targeted gene disruption in Xenopus laevis using CRISPR/Cas9. Cell Biosci, 2015, 5: 15. (IF=9.584)

[13] Shi, Z. #, Wang, F. #, Cui, Y. #, Liu, Z., Guo, X., Zhang, Y., Deng, Y., Zhao, H., Chen, Y. Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis. Faseb J, 2015, 29(12): 4914-23.

[14] Guo, X., Zhang, T., Hu, Z., Zhang, Y., Shi, Z., Wang, Q., Cui, Y., Wang, F., Zhao, H., Chen, Y. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development, 2014, 141(3): 707-14.