师资

王浩
副研究员
wangh@sustech.edu.cn

研究领域

凝聚态物理理论,分数量子霍尔效应系统

 

教育背景

2000.08-2006.12 博士(凝聚态物理) 美国明尼苏达大学

1997.09-2000.07 硕士(凝聚态物理) 清华大学

1992.09-1997.07 学士(现代应用物理)清华大学

 

工作经历

2013.02-2018.08   南方科技大学物理系,助理教授

2011.08-2013.02   香港大学物理系,博士后/研究助理教授

2009.08-2011.08   美国弗吉尼亚理工大学物理系,博士后

2007.01-2009.08   美国加利福尼亚州立大学北岭分校物理系,博士后

 

论文及专利

1. Possible half-metallic phase in bilayer graphene: Calculations based on mean-field theory applied to a two-layer Hubbard model, Jie Yuan, Dong-Hui Xu, Hao Wang, Yi Zhou, Jin-Hua Gao, and Fu-Chun Zhang, Phys. Rev. B 88, 201109(R) (2013).
2. Layer antiferromagnetic ground state in bilayer graphene: a first-principle investigation, Yong

Wang, Hao Wang, Jin-hua Gao, and Fu-chun Zhang, Phys. Rev. B 87, 195413 (2013).

3. Flat band electrons and interactions in rhombohedral trilayer graphene, Hao Wang, Jin-Hua Gao, and Fu-Chun Zhang, Phys. Rev. B 87, 155116 (2013).
4. Fractional quantum Hall states in two-dimensional electron systems with anisotropic interactions, Hao Wang, Rajesh Narayanan, Xin Wan, and Funchun Zhang, Phys. Rev. B 86, 035122 (2012).
5. Models of strong interaction in flat-band graphene nanoribbons: magnetic quantum crystals, Hao Wang and V. W. Scarola, Phys. Rev. B 85, 075438 (2012).
6. Jastrow-correlated wavefunctions for flat-band lattices, Hao Wang and V. W. Scarola, Phys. Rev. B 83, 245109 (2011).
7. Identifying quantum topological phases through statistical correlation, Hao Wang, B. Bauer, M. Troyer, and V. W. Scarola, Phys. Rev. B 83, 115119 (2011).
8. Particle-hole symmetry breaking and 5/2 fractional quantum hall effect, Hao Wang, D. N. Sheng, and F. D. M. Haldane, Phys. Rev. B 80, 241311(R) (2009).
9. Broken-symmetry states of Dirac fermions in graphene with a partially filled high landau level, Hao Wang, D. N. Sheng, L. Sheng, and F. D. M. Haldane, Phys. Rev. Lett. 100, 116802 (2008).
10. Unconventional magnetic vortex structures observed in micromagnetic simulations, M. Yan, H. Wang, and C. E. Campbell, J. Magn. Magn. Mater. 320, 1937 (2008).
11.

 

Spin dynamics of a magnetic anitvortex: micromagnetic simulations, Hao Wang and C. E. Campbell, Phys. Rev. B 76, 220407(R) (2007).
12. Vorticity and antivorticity in submicron ferromagnetic films, Hao Wang, M. Yan and C. E. Campbell, Int. J. Mod. Phys. B 21, 2289 (2007).
13. Spin wave modes in thin-film ferromagnetic stripes, M. Yan, H. Wang, P. A. Crowell, C. E. Campbell, and C. Bayer, Condensed Matter Theories, vol. 20, Ed. J. W. Clark, R. M. Panoff, and H. Li, Nova Scientific, New York, 251-263 (2006).
14. Spin waves in an inhomogeneously magnetized stripe, C. Bayer, J. P. Park, H. Wang, M. Yan, C. E. Campbell, and P. A. Crowell, Phys. Rev. B 69, 134401 (2004).
15. Spin-resonant suppression and enhancement in ZnSe/Zn1-xMnxSe multiplayer heterostructures, Y. Guo, B.-L. Gu, H. Wang, and Y. Kawazoe, Phys. Rev. B 63, 214415 (2001).
16. Spin-polarized transport through a ZnSe/Zn1-xMnxSe heterostructure under an applied electric field, Y. Guo, H. Wang, B.-L. Gu, and Y. Kawazoe, J. Appl. Phys. 88, 6614 (2000).
17. Electric-field effects on electronic tunneling transport in magnetic barrier structures, Y. Guo, H. Wang, B.-L. Gu, and Y. Kawazoe, Phys. Rev. B 61, 1728 (2000).
18. Electron coherent tunneling in low-dimensional magnetic quantum structures, Yong Guo, Hao Wang, Bing-Lin Gu, and Yoshiyuki Kawazoe, Physica E 8, 146 (2000).
19. Wave-vector-dependent tunneling transmission characteristics in periodic and quasiperiodic semiconductor supperlattices, Guo Yong, Wang Hao, and Gu Bing-Lin, Tsinghua Science and Technology 5(2), (2000).
20. Transport of electrons in double-barrier magnetic structures under a constant electric field, Wang Hao, Guo Yong, and Gu Bing-Lin, Acta Physics Sinica 48(9), 1723 (1999).

 

© 2018 All Rights Reserved. 粤ICP备14051456号