Faculty
<span font-size:16px;white-space:normal;background-color:#ffffff;"="" style="caret-color: rgb(51, 51, 51); color: rgb(51, 51, 51);">Dr. Ye currently serves as a Professor in the Department of Earth and Space Sciences at the Southern University of Science and Technology (SUSTech). Received Bachelor of Science in Physics from Tsinghua University in 2000 and Ph.D. in Space Physics from Dartmouth College, USA, in 2007. Subsequently, Dr. Ye worked at the Department of Physics and Astronomy at the University of Iowa, where he conducted research primarily based on data from NASA's Cassini and Juno missions. Dr. Ye has published more than 90 peer-reviewed papers in internationally renowned journals such as Science, Geophysical Research Letters, and Journal of Geophysical Research. He served as the Associate Director of the Planetary Physics Committee of the Chinese Geophysical Society and was previously selected as the Institutional Principal Investigator for a NASA Cassini Data Analysis Program (CDAP) project. He has also led multiple research initiatives, including a sub-project under the Chinese Academy of Sciences’ Strategic Priority Research Program (Category B), grants from the National Natural Science Foundation of China (NSFC), and a stable support research project from the Shenzhen Science and Technology Innovation Commission.
EDUCATION
Ph.D., Physics – DARTMOUTH COLLEGE, Hanover, NH (2007)
B.S., Physics – TSINGHUA UNIVERSITY, Beijing, China (2000)
PROFESSIONAL EXPERIENCE
2019 – Professor SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY
2014 – 2019 Associate Research Scientist UNIVERSITY OF IOWA
2009 – 2014 Assistant Research Scientist UNIVERSITY OF IOWA
2007 – 2009 Postdoctoral Research Scholar UNIVERSITY OF IOWA
ACHIEVEMENTS
Shenzhen Pengcheng overseas talent
Guangdong province Zhujiang Leading Talent
NASA group achievement award for Cassini RPWS Science in the Ring Grazing and Grand Finale orbits
Institutional PI of NASA Cassini Data Analysis Program (CDAP) project
Defined a longitude system for Saturn (SLS5)
Dust hazard assessment expert at JPL for the Grand Finale of Cassini mission
Invited member: International Space Science Institute (ISSI) team “Physics of Dust Impacts: Detection of Cosmic Dust by Spacecraft and its Influence on the Plasma Environment”
Invited member: ISSI team “Rotational phenomena in Saturn's magnetosphere”
PROFESSIONAL SERVICE
Manuscript reviewer: GRL, JGR, Annales Geophysicae, Icarus, Radio Science, etc.
Review panelist: NASA Solar System Workings program
Mail-in reviewer: NASA Cassini Data Analysis and Participating Scientist (CDAPS) program
Session convener for COSPAR, AOGS meeting
AOGS 2028 Local Advisory Committee
Vice director of Planetary Physics Committee of Chinese Geophysical Society
Area of Research
Solar wind interaction with planetary magnetosphere
Planetary magnetosphere-ionosphere coupling
Radio emissions and plasma waves in space
Rotational phenomena in planetary magnetospheres
Dusty rings of outer planets
Remote sensing and in-situ measurements of space plasma
Dust detection in space
Publications
[96] Wang, B., Ye, S., Varela, J. and Luo, X., 2025. Magnetohydrodynamic simulations preliminarily predict the habitability and radio emission of TRAPPIST-1e. Astronomy & Astrophysics, 683, A41. https://doi.org/10.1051/0004-6361/202555471
[94] Long, M., Ni, B., Roussos, E., Summers, D., Blanc, M., Xiao, Z., Cao, X., Yao, Z., Zhang, B., Ye, S. and Deng, Q., 2025. Long-term enhancing of Jupiter’s electrostatic waves as diagnostic of Io’s mass loading activity. Science Bulletin. https://doi.org/10.1016/j.scib.2025.03.043
[92] Wu, S., Whiter, D.K., Zhang, S., Taubenschuss, U., Zarka, P., Fischer, G., Lamy, L., Ye, S., Waters, J., Cecconi, B. and Li, P., 2025. Spatial distribution and plasmaspheric ducting of auroral kilometric radiation revealed by Wind, Polar, and Arase. AGU Advances, 6(4), p.e2025AV001743. https://doi.org/10.1029/2025AV001743
[90] Cao, X., Lu, P., Ni, B., Ye, S., Wu, S., Long, M., & Wang, S., 2025. Resonant Scattering of Radiation Belt Electrons by Saturnian Z‐Mode Waves. Geophysical Research Letters, 52(5), e2024GL114242. https://doi.org/10.1029/2024GL114242
[88] Yan, T., Zhang, B., Chen, J., Yang, Z., Ye, S., & Cui, J., Unveiling the Connection between the Alfvénic Oval and the Open–Closed Field Line Boundary at Ganymede. The Astrophysical Journal. 975:107 (10pp). https://doi.org/10.3847/1538-4357/ad7a7a
[86] Wu, S., Ye, S., Taubenschuss, U., Fischer, G., Jackman, C.M., Zarka, P., Kurth, W.S., Wang, M., Cecconi, B., Ning, H. and Long, M., 2024. Formation of an extended equatorial shadow zone for low‐frequency Saturn Kilometric Radiation. Geophysical Research Letters, 51(15), p.e2023GL106652. https://doi.org/10.1029/2023GL106652
[84] Li, P., Zhang, S., Xiao, F., Yang, H., Ye, S., Liu, S., et al., 2024. Annual and Seasonal Occurrence Pattern of Auroral Kilometric Radiation Associated with the Interplanetary Magnetic Field. The Astrophysical Journal Letters, 966(2), L26, https://doi.org/10.3847/2041-8213/ad40a7
[82] Wu, S., Taubenschuss, U., Ye, S., Fischer, G., Cecconi, B., Wang, M., et al., 2024. Ray‐tracing analysis for the propagation of Saturn narrowband emission within the Saturnian magnetosphere. Journal of Geophysical Research: Planets, 129(4), https://doi.org/10.1029/2023JE008118
[80] Feng, E., Zhang, B., Yao, Z., Delamere, P. A., Zheng, Z., Dunn, W. R., & Ye, S., Variation of the Jovian Magnetopause Under Constant Solar Wind Conditions: Significance of Magnetodisc Dynamics. Geophysical Research Letters, 50(12), e2023GL104046. https://doi.org/10.1029/2023GL104046
[78] Duanmu, X., Yao, Z., Wei, Y., Ye, S., 2023. Two types of mirror mode waves in the Kronian magnetosheath. Earth and Planetary Physics, 7(3), 414–420. https://doi.org/10.26464/epp2023040
[76] Wu, S., Ye, S., Fischer, G., Wang, J., Kurth, W. S., Yao, Z., et al., 2023. Phase locking among Saturn radio emissions revealed by Cassini observations. Astronomy & Astrophysics, 680, A7. https://doi.org/10.1051/0004-6361/202347279
[74] Wu, H., Chen, T., Kalegaev, V., and Ye, S., 2023. Different behaviors of outer radiation belt keV and MeV electrons during two sequential geomagnetic storms. Journal of Geophysical Research: Space Physics, 128(10), e2023JA031700. https://doi.org/10.1029/2023JA031700
[72] Gu, W. D., Yao, Z. H., Pan, D. X., Xu, Y., Zhang, B., Delamere, P. A., Fu, S.Y., Xie, L., Ye, S.Y., Chen, Y. N., Dunn, W. R., Wei, Y., 2023. Hourly periodic variations of ultralow-frequency (ULF) waves in Jupiter's magnetosheath. Journal of Geophysical Research: Planets, 128, e2022JE007625. https://doi.org/10.1029/2022JE007625
[70] 吴伟仁,王赤,刘洋,秦礼萍,林巍,叶生毅,李晖,沈芳,张哲,2023.深空探测之前沿科学问题探析.科学通报,68(06):606-627.
[68] Wu, S., Zarka, P., Lamy, L., Taubenschuss, U., Cecconi, B., Ye, S., et al. 2022. Observations of the first harmonic of Saturn Kilometric Radiation during Cassini's Grand Finale. Journal of Geophysical Research: Space Physics, 127, e2022JA030776. https://doi.org/10.1029/2022JA030776
[66] Long, M., Cao, X., Gu, X., Ni, B., Qu, S., Ye, S., Yao, Z., Wu, S. and Xu, Y., 2022. Statistics of Water-group Band Ion Cyclotron Waves in Saturn's Inner Magnetosphere Based on 13 yr of Cassini Measurements. The Astrophysical Journal, 932(1), p.56. https://doi.org/10.3847/1538-4357/ac6bf0
[64] Hadid, L. Z., Shebanits, O., Wahlund, J. E., Morooka, M. W., Nagy, A. F., Farrell, W. M., Holmberg, M.K.G., Modolo, R., Persoon, A. M., Tseng, W. L., and Ye, S. Y., 2022. Ambipolar electrostatic field in negatively charged dusty plasma. Journal of Plasma Physics, 88(2). https://doi.org/10.1017/S0022377822000186
[62] Guo, R.L., Yao, Z.H., Dunn, W.R., Palmaerts, B., Sergis, N., Grodent, D., Badman, S.V., Ye, S.Y., Pu, Z.Y., Mitchell, D.G. and Zhang, B.Z., 2021. A Rotating Azimuthally Distributed Auroral Current System on Saturn Revealed by the Cassini Spacecraft. The Astrophysical Journal Letters, 919(2), p.L25. https://doi.org/10.3847/2041-8213/ac26b5
[60] Wu,S.Y., Ye, S. Y., Fischer, G., Wang, J., Long, M.Y., Menietti, J. D., Cecconi, B., and Kurth, W.S., 2021. Statistical study on spatial distribution and polarization of Saturn narrowband emissions, Astrophys. J., https://doi.org/10.3847/1538-4357/ac0af1
[58] Ye, S.‐Y., Averkamp, T. F., Kurth, W. S., Brennan, M., Bolton, S., Connerney, J. E. P., & Joergensen, J. L. (2020). Juno Waves detection of dust impacts near Jupiter. Journal of Geophysi-cal Research: Planets, 124, e2019JE006367. https://doi.org/10.1029/2019JE006367
[56] Carbary, J.F., Mitchell, D.G. and Ye, S.Y., 2019. Energetic Electron Patterns in the New SLS5 Longitude System, Journal of Geophysical Research. https://doi.org/10.1029/2019JA027036
[54] Ye, S. Y., Vaverka, J., Nouzak, L., Sternovsky, Z., Zaslavsky, A., Pavlu, J., Mann, I., Hsu, H.-W., Averkamp, T. F., Sulaiman, A. H., Pisa, D., Hospodarsky, G. B., Kurth, W. S. and Horanyi, M., 2019. Understanding Cassini RPWS Antenna Signals Triggered by Dust Impacts, Geophysical Re-search Letters, 46(13), pp. 10941-10950, https://doi.org/10.1029/2019GL084150
[52] Yao, Z.H., Grodent, D., Kurth, W.S., Clark, G., Mauk, B.H., Kimura, T., Bonfond, B., Ye, S.Y., Lui, A.T., Radioti, A., Palmaerts, B., Dunn, W. R., Ray, L.C., Bagenal, F., Badman, S.V., Rae, I.J., Guo, R.L., Pu, Z.Y., Gérard, J.-C., Yoshioka, K., Nichols, J.D., Connerney, J.E.P., Bolton, S. and Levin, S. M., 2019. On the relation between Jovian aurorae and the loading/unloading of the magnet-ic flux: simultaneous measurements from Juno, HST and Hisaki. Geophysical Research Letters. https://doi.org/10.1029/2019GL084201
[50] Chancia, R.O., Hedman, M.M., Cowley, S.W.H., Provan, G. and Ye, S.Y., 2019. Seasonal structures in Saturn's dusty Roche Division are tied to periodicities of the planet's magnetosphere. Icarus. 330, pp. 230 -255.https://doi.org/10.1016/j.icarus.2019.04.012
[48] Yao, Z.H., Radioti, A., Grodent, D., Ray, L.C., Palmaerts, B., Sergis, N., Dialynas, K., Coates, A.J., Arridge, C.S., Roussos, E. and Badman, S.V., Ye, S.Y., Gérard, G.-C., Delamere, P. A., Guo, R. L., Pu, Z.Y., Waite, J. H., Krupp, N., Mitchell, D.G. and Dougherty, M.K., 2018. Recurrent magnet-ic dipolarization at Saturn: revealed by Cassini. Journal of Geophysical Research: Space Phys-ics, 123(10), pp.8502-8517. https://doi.org/10.1029/2018JA025837
[46] Hsu, H.W., Schmidt, J., Kempf, S., Postberg, F., Moragas-Klostermeyer, G., Seiß, M., Hoff-mann, H., Burton, M., Ye, S., Kurth, W.S. and Horányi, M., 2018. In situ collection of dust grains falling from Saturn’s rings into its atmosphere. Science, 362(6410), p.eaat3185. https://doi.org/10.1126/science.aat3185
[44] Ye, S.Y., Kurth, W.S., Hospodarsky, G.B., Persoon, A.M., Gurnett, D.A., Morooka, M., Wahlund, J.E., Hsu, H.W., Seiß, M. and Srama, R., 2018. Cassini RPWS Dust Observation Near the Janus/Epimetheus Orbit. Journal of Geophysical Research: Space Physics, 123(6), pp.4952-4960. https://doi.org/10.1029/2017JA025112
[42] Menietti, J.D., Averkamp, T.F., Ye, S.Y., Persoon, A.M., Morooka, M.W., Groene, J.B. and Kurth, W.S., 2018. Extended Survey of Saturn Z‐Mode Wave Intensity Through Cassini's Final Or-bits. Geophysical Research Letters, 45(15), pp.7330-7336. https://doi.org/10.1029/2018GL079287
[40] Menietti, J.D., Averkamp, T.F., Ye, S.Y., Sulaiman, A.H., Morooka, M.W., Persoon, A.M., Hospodarsky, G.B., Kurth, W.S., Gurnett, D.A. and Wahlund, J.E., 2018. Analysis of intense Z‐mode emission observed during the Cassini proximal orbits. Geophysical Research Letters, 45, 6766–6772. https://doi.org/10.1002/2018GL077354
[38] Hedman, M.M., Dhingra, D., Nicholson, P.D., Hansen, C.J., Portyankina, G., Ye, S. and Dong, Y., 2018. Spatial Variations in the Dust-to-Gas Ratio of Enceladus’ Plume. Icarus. Vol 305, p123-138, https://doi.org/10.1016/j.icarus.2018.01.006
[36] Kurth, W.S., Imai, M., Hospodarsky, G.B., Gurnett, D.A., Tetrick, S.S., Ye, S.Y., Bolton, S.J., Connerney, J.E.P. and Levin, S.M., 2017. First observations near Jupiter by the Juno Waves investi-gation. Planetary Radio Emissions VIII, pp. 1-12. https://doi.org/10.1553/PRE8s1
[34] Wahlund, J.E., Morooka, M.W., Hadid, L.Z., Persoon, A.M., Farrell, W.M., Gurnett, D.A., Hospodarsky, G., Kurth, W.S., Ye, S.Y., Andrews, D.J. and Edberg, N.J., 2018. In situ measure-ments of Saturn’s ionosphere show that it is dynamic and interacts with the rings. Science, 359(6371), pp.66-68. https://doi.org/10.1126/science.aao4134
[32] Krupp, N., Roussos, E., Paranicas, C., Mitchell, D.G., Kollmann, P., Ye, S., Kurth, W.S., Khurana, K.K., Perryman, R., Waite, H. and Srama, R., 2018. Energetic electron measurements near Enceladus by Cassini during 2005–2015. Icarus, 306, pp.256-274. https://doi.org/10.1016/j.icarus.2017.10.022
[30] Menietti, J.D., Yoon, P.H., Písa, D., Ye, S.Y., Santolík, O., Arridge, C.S., Gurnett, D.A. and Coates, A.J., 2016. Source region and growth analysis of narrowband Z‐mode emission at Sat-urn. Journal of Geophysical Research: Space Physics, 121(12), pp. 11929-11942. https://doi.org/10.1002/2016JA022913
[28] Ye, S.Y., Fischer, G., Kurth, W.S., Menietti, J.D. and Gurnett, D.A., 2016. Rotational modula-tion of Saturn's radio emissions after equinox. Journal of Geophysical Research: Space Phys-ics, 121(12). pp. 11714-11728. https://doi.org/10.1002/2016JA023281
[26] Engelhardt, I.A.D., Wahlund, J.E., Andrews, D.J., Eriksson, A.I., Ye, S., Kurth, W.S., Gurnett, D.A., Morooka, M.W., Farrell, W.M. and Dougherty, M.K., 2015. Plasma regions, charged dust and field-aligned currents near Enceladus. Planetary and Space Science, 117, pp.453-469. https://doi.org/10.1016/j.pss.2015.09.010
[24] Fischer, G., Gurnett, D.A., Kurth, W.S., Ye, S.Y. and Groene, J.B., 2015. Saturn kilometric ra-diation periodicity after equinox. Icarus, 254, pp.72-91. https://doi.org/10.1016/j.icarus.2015.03.014
[22] Fischer, G., Ye, S.Y., Groener, J.B., Ingersoll, A.P., Sayanagi, K.M., Menietti, J.D., Kurth, W.S. and Gurnett, D.A., 2014, December. A possible influence of the Great White Spot on Saturn kilo-metric radiation periodicity. In Annales Geophysicae(Vol. 32, No. 12, pp. 1463-1476). European Geosciences Union. https://doi.org/10.5194/angeo-32-1463-2014
[20] Ye, S.Y., Gurnett, D.A., Kurth, W.S., Averkamp, T.F., Morooka, M., Sakai, S. and Wahlund, J.E., 2014. Electron density inside Enceladus plume inferred from plasma oscillations excited by dust impacts. Journal of Geophysical Research: Space Physics, 119(5), pp.3373-3380. https://doi.org/10.1002/2014JA019861
[18] Ye, S.Y., Gurnett, D.A., Menietti, J.D., Kurth, W.S., Fischer, G., Schippers, P. and Hospo-darsky, G.B., 2012. Cassini observation of Jovian anomalous continuum radiation. Journal of Geo-physical Research: Space Physics, 117(A4). https://doi.org/10.1029/2011JA017135
[16] Ye, S.Y., Fischer, G., Menietti, J.D., Wang, Z., Gurnett, D.A. and Kurth, W.S., 2011. An Over-view of Saturn Narrowband Radio Emissions Observed by Cassini RPWS. Planetary, Solar and He-liospheric Radio Emissions (PRE VII), pp.99-113. https://doi.org/10.1553/PRE7s99
[14] Menietti, J.D., Mutel, R.L., Schippers, P., Ye, S.Y., Santolik, O., Kurth, W.S., Gurnett, D.A., Lamy, L. and Cecconi, B., 2011. Saturn kilometric radiation near a source center on day 73, 2008. Planetary Radio Emissions VII, pp.87-95. https://doi.org/10.1553/PRE7s87
[12] Ye, S.Y., Gurnett, D.A., Groene, J.B., Wang, Z. and Kurth, W.S., 2010. Dual periodicities in the rotational modulation of Saturn narrowband emissions. Journal of Geophysical Research: Space Physics, 115(A12). https://doi.org/10.1029/2010JA015780
[10] Wang, Z., Gurnett, D.A., Fischer, G., Ye, S.Y., Kurth, W.S., Mitchell, D.G., Leisner, J.S. and Russell, C.T., 2010. Cassini observations of narrowband radio emissions in Saturn's magneto-sphere. Journal of Geophysical Research: Space Physics, 115(A6). https://doi.org/10.1029/2009JA014847
[8] Menietti, J.D., Ye, S.Y., Piker, C.W. and Cecconi, B., 2010. The influence of Titan on Saturn kil-ometric radiation. Annales Geophysicae (09927689), 28(2), pp.395-406. https://doi.org/10.5194/angeo-28-395-2010
[6] Fischer, G., Cecconi, B., Lamy, L., Ye, S.Y., Taubenschuss, U., Macher, W., Zarka, P., Kurth, W.S. and Gurnett, D.A., 2009. Elliptical polarization of Saturn kilometric radiation observed from high latitudes. Journal of Geophysical Research: Space Physics, 114(A8). https://doi.org/10.1029/2009JA014176
[4] Ye, S. and LaBelle, J., 2008. Ground based observations of low frequency auroral hiss fine structure. Journal of Geophysical Research: Space Physics, 113(A1). https://doi.org/10.1029/2007JA012473
[2] Ye, S., LaBelle, J., Yoon, P.H. and Weatherwax, A.T., 2007. Experimental tests of the eigenmode theory of auroral roar fine structure and its application to remote sensing. Journal of Ge-ophysical Research: Space Physics, 112(A12). https://doi.org/10.1029/2007JA012525
<p font-size:16px;white-space:normal;background-color:#ffffff;"="" style="overflow-wrap: break-word; font-family: "sans serif", tahoma, verdana, helvetica; font-size: 12px; text-align: start; text-wrap-mode: wrap; caret-color: rgb(51, 51, 51); color: rgb(51, 51, 51);">[1] Ye, S., LaBelle, J. and Weatherwax, A.T., 2006. Further study of flickering auroral roar emission: 1. South Pole observations. Journal of Geophysical Research: Space Physics, 111(A7). https://doi.org/10.1029/2005JA011271