师资

EN       返回上一级       师资搜索
郝马克
副教授
mark@sustech.edu.cn

个人简介

Mark James Hopwood,南方科技大学海洋科学与工程系副教授,痕量金属洁净实验室负责人,领导海岸与极地海洋生物地球化学研究团队(现有1名博士后、7名博士/硕士研究生及3名研究助理)。2014年,他于英国南安普顿大学获得海洋与地球科学博士学位,师从痕量金属清洁技术先驱Peter Statham,该技术是研究海洋中超痕量金属的关键手段。2015年,Hopwood博士加入德国基尔亥姆霍兹海洋研究中心,在Eric Achterberg教授领导的全球顶尖海洋化学团队担任博士后研究员,期间前往美国北卡罗莱纳大学威尔明顿分校进行交流学习。自2017年起,他开始担任智利瓦尔迪维亚高纬度海洋生态系统动力学研究中心副研究员。2019年,他获得德国科研基金会(DFG)资助开展格陵兰岛与南极洲周边冰-洋相互作用研究。2021年4月,Hopwood博士作为助理教授加入南方科技大学,同年12月获聘为副教授。

Hopwood教授已累计参与9次科考航次,在斯瓦尔巴群岛、格陵兰及南极地区累计开展极地科考逾10个月。其研究成果发表于Nature Communications、Nature Geoscience、Geophysical Research Letters等海洋学一流期刊,累计发表论文60余篇。Hopwood教授现任Journal of Geophysical Research: Oceans (AGU) 期刊的副编辑。

Hopwood教授目前开设两门课程:春季学期的本科生课程——OCE 108 碳中和概论,秋季学期的研究生课程——OCE 5030 海洋生物地球化学循环。其研究团队目前在中国科学院大亚湾海洋生物综合实验站(大亚湾站)开展大规模(10万升)实验,探索海洋碱度增强等负排放技术在安全储存更多二氧化碳方面的潜力。

Hopwood教授还利用自己的业余时间担任海阔体育的助教,通过教授小学生海洋科学相关知识和浆板技能,让孩子们感受海洋以及海洋科学的魅力。此外他也兼任学校射箭社团的教练。


教育背景

英国南安普顿大学 海洋学院 地球与海洋科学博士(2011.09 – 2014.09)

博士论文: The redox and complexation chemistry of iron within freshwater sources to the ocean

英国曼彻斯特大学 化学学院 化学与专利法双硕士学位(本硕连读) (2007.09 – 2011.06)

硕士论文:The promiscuity of two 4-methylideneimidazol-5-one dependent enzymes


工作经历

南方科技大学 工学院 海洋科学与工程系,副教授,2021.03 - 至今

德国基尔亥姆霍兹海洋研究中心,博士后,2014.09 – 2021.03


在研项目

1. POLAR BEAST cruise (5 weeks) – a polar cruise investigating Arctic/Atlantic connectivity via the EGC

2. EUROFLEETS Ice Disko cruise (2 weeks) – biogeochemistry of icebergs in Disko Bay

3. NSFC RFIS Investigating cobalt dynamics in the cryosphere (Arctic and Antarctic)


发表论著

1. Ruan et al., Meltwater as a driver of changing nickel availability in the polar ocean?, Biogeochemistry, (2025)

2. Hopwood et al., Contrasting marine phytoplankton responses to meltwater inputs from Arctic and Antarctic glaciers revealed by bioassay experiments, Elementa: Science of the Anthropocene, (2025)

3. Hopwood et al., Invariable nickel dynamics in the Peru, Benguela and Mauritania Oxygen Minimum Zones, Deep Sea Research Part II, (2025)

4. Hopwood et al., Glacier geoengineering may have unintended consequences for marine ecosystems and fisheries, AGU Advances, (2025)

5. Wood et al., Increased melt from Greenland’s most active glacier fuels enhanced coastal productivity, Communications Earth & Environment, (2025)

6. Liu T. et al., Trace metal effluxes from Peruvian shelf sediments constrained in parallel by benthic lander mounted pumps and pelagic rosette sampling, J. Geophys. Res. Biogeosciences, (2025)

7. Guo, Y. et al., Distributions of particulate Ba, Cr, Sr, Zn, Mo, W, Th, and U on the Northeast Greenland Shelf, Chemical Geology, (2025)

8. Gu Y. et al., Tracking the dispersal of river water, atmospheric deposition, and shallow sedimentary trace metal inputs from the Congo region into the South Atlantic, J. Geophys. Res. Oceans, (2025)

9. Hopwood, M.J. et al., A close look at dissolved silica dynamics in Disko Bay, west Greenland, Global Biogeochemical Cycles, (2025)

10. Zhu K. et al., An impact of cobalt on freshwater phytoplankton in warming polar regions?, Geophysical Research Letters, (2024)

11. Krause J. et al., The macronutrient and micronutrient (iron and manganese) content of icebergs, The Cryosphere, (2024)

12. Zhu X. et al., Incubation experiments characterize turbid glacier plumes as a major source of Mn and Co, and a minor source of Fe and Si, to seawater, Global Biogeochemical Cycles, (2024)

13. Gu Y. et al., Spatial and temporal variations in the micronutrient Fe across the Peruvian shelf from 1984-2017, Progress in Oceanography, (2024)

14. Liu T. et al., Trace metal (Cd, Cu, Pb and Zn) fluxes from the Congo River into the South Atlantic Ocean are supplemented by atmospheric inputs, Geophysical Research Letters, (2023)

15. Vonnahme T. et al., Impact of winter freshwater from tidewater glaciers on fjords in Svalbard and Greenland; A review, Progress in Oceanography, (2023)

16. Krause J. et al., Glacier‐derived particles as a regional control on marine dissolved Pb concentrations, J. Geophys. Res. Biogeosciences, (2023)

17. Meire L. et al., Glacier retreat alters downstream fjord ecosystem structure and function in Greenland, Nature Geoscience, (2023)

18. Oliver H. et al., Greenland Subglacial Discharge as a Driver of Hotspots of Increasing Coastal Chlorophyll Since the Early 2000s, Geophysical Research Letters, (2023)

19. Zhu K. et al., Influence of Changes in pH and Temperature on the Distribution of Apparent Iron Solubility in the Oceans, Global Biogeochemical Cycles, (2023)

20. Stuart-Lee A. E. et al., Influence of glacier type on bloom phenology in two southwest Greenland fjords, Estuarine, Coastal and Shelf Science, (2023)

21. Kittu L. R. et al., Coastal N2 fixation rates coincide spatially with N loss in the Humboldt Upwelling System off Peru, Global Biogeochemical Cycles, (2023)

22. Chen X. G. et al., Dissolved, labile and total particulate trace metal dynamics on the northeast Greenland Shelf, Global Biogeochemical Cycles, (2022)

23. Hunt H. R. et al., Distinguishing the influence of sediments, the Congo River, and water-mass mixing on the distribution of iron and its isotopes in the Southeast Atlantic Ocean, Marine Chemistry, (2022)

24. Krisch S. et al., Quantifying ice-sheet derived lead (Pb) fluxes into the ocean; a case study at Nioghalvfjerdsbrae, Geophysical Research Letters, (2022)

25. Liu T. et al., Sediment release in the Benguela Upwelling System dominates trace metal input to the shelf and eastern South Atlantic Ocean, Global Biogeochemical Cycles, (2022)

26. van Genuchten G. M. et al., Solid-phase Mn speciation in suspended particles along meltwater-influenced fjords of West Greenland, Geochimica et Cosmochimica Acta 326, 180-198, (2022)

27. Slater, D. A. et al., Characteristic depths, fluxes and timescales for Greenland's tidewater glacier fjords from subglacial discharge‐driven upwelling during summer, Geophysical Research Letters, (2022)

28. Krisch, S. et al., Arctic–Atlantic exchange of the dissolved micronutrients Iron, Manganese, Cobalt, Nickel, Copper and Zinc with a focus on Fram Strait, Global Biogeochemical Cycles, (2022)

29. Wallmann, K. et al., Biogeochemical feedbacks may amplify ongoing and future ocean deoxygenation: a case study from the Peruvian oxygen minimum zone, Biogeochemistry 159 (1), 45-67, (2022)

30. van Genuchten G. M. et al., Decoupling of particles and dissolved iron downstream of Greenlandic glacier outflows, Earth and Planetary Science Letters 576, (2021)

31. Krahmann, G. et al., Climate-Biogeochemistry Interactions in the Tropical Ocean: Data collection and legacy. Front. Mar. Sci. (2021)

32. Zhu, K. et al., Influence of pH and Dissolved Organic Matter on Iron Speciation and Apparent Iron Solubility in the Peruvian Shelf and Slope Region. Environ. Sci. Technol. (2021)

33. Krisch, S. et al., The 79°N Glacier cavity modulates subglacial iron export to the NE Greenland Shelf. Nat. Commun. 12, 3030, (2021).

34. Vergara-Jara, M. J. et al., A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015. Ocean Sci. 17, 561–578, (2021)

35. Browning, T. J. et al., Iron regulation of North Atlantic eddy phytoplankton productivity. Geophys. Res. Lett. (2021)

36. Geißler, F. et al., Lab-on-chip analyser for the in situ determination of dissolved manganese in seawater. Sci. Rep. 11, (2021)

37. Krause, J. et al., Trace element (Fe, Co, Ni and Cu) dynamics across the salinity gradient in Arctic and Antarctic glacier fjords, Frontiers in Earth Science, (2021)

38. Cantoni, C. et al. Glacial drivers of marine biogeochemistry indicate a future shift to more corrosive conditions in an Arctic fjord. J. Geophys. Res. Biogeosciences 125, (2020)

39. Bach, L. T. et al., Factors controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system off Peru. Biogeosciences 17, (2020).

40. Krisch, S. et al., The influence of Arctic Fe and Atlantic fixed N on summertime primary production in Fram Strait, North Greenland Sea. Sci. Rep. 10, 15230, (2020)

41. Hopwood, M. J. et al., Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosph. (2020)

42. Vieira, L. H. et al., Unprecedented Fe delivery from the Congo River margin to the South Atlantic Gyre. Nat. Commun. (2020)

43. Hopwood, M. J. et al., Experiment design and bacterial abundance control extracellular H2O2 concentrations during four series of mesocosm experiments. Biogeosciences, (2020)

44. Hopwood, M. J. et al. Fe(II) stability in coastal seawater during experiments in Patagonia, Svalbard, and Gran Canaria. Biogeosciences, (2020)

45. Browning, T. J. et al. Nutrient regulation of late spring phytoplankton blooms in the midlatitude North Atlantic. Limnol. Oceanogr. 65, 1136–1148, (2019)

46. Hopwood, M. J. et al., Highly variable iron content modulates iceberg-ocean fertilisation and potential carbon export. Nat. Commun. 10, 5261, (2019)

47. Straneo, F. et al., The case for a sustained Greenland Ice sheet-Ocean Observing System (GrIOOS). Frontiers in Marine Science, (2019)

48. Höfer, J. et al., The role of water column stability and wind mixing in the production/export dynamics of two bays in the Western Antarctic Peninsula. Prog. Oceanogr. 174, (2019)

49. Hopwood, M. J. et al., Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9, 3256, (2018)

50. Hopwood, M. J. et al., Photochemical vs. Bacterial Control of H2O2 Concentration Across a pCO2 Gradient Mesocosm Experiment in the Subtropical North Atlantic. Frontiers in Marine Science vol. 5 105, (2018)

51. Menzel Barraqueta, J.-L. et al., Aluminium in the North Atlantic Ocean and the Labrador Sea (GEOTRACES GA01 section): roles of continental inputs and biogenic particle removal. Biogeosciences 2018, 1–28, (2018).

52. Hopwood, M. J., Rapp, I., Schlosser, C. & Achterberg, E. P. Hydrogen peroxide in deep waters from the Mediterranean Sea, South Atlantic and South Pacific Oceans. Sci. Rep. 7, (2017)

53. Hopwood, M. J. et al. A Comparison between Four Analytical Methods for the Measurement of Fe(II) at Nanomolar Concentrations in Coastal Seawater. Frontiers in Marine Science vol. 4 192, (2017)

54. Geißler, F. et al., Evaluation of a ferrozine based autonomous in situ lab-on-chip analyzer for dissolved iron species in coastal waters. Front. Mar. Sci. 4, (2017)

55. Hopwood, M. J. et al., The heterogeneous nature of Fe delivery from melting icebergs. Geochemical Perspect. Lett. 3, 200–209, (2017)

56. Meire, L. et al., High export of dissolved silica from the Greenland Ice Sheet. Geophys. Res. Lett. 43, 9173–9182, (2016)

57. Hopwood, M. J. et al., Seasonal changes in Fe along a glaciated Greenlandic fjord. Front. Earth Sci. 4, (2016)

58. Hopwood, M. J., Statham, P. J., Skrabal, S. A. & Willey, J. D. Dissolved iron(II) ligands in river and estuarine water. Mar. Chem. 173, 173–182, (2015)

59. Hopwood, M. J. et al., Glacial meltwater from Greenland is not likely to be an important source of Fe to the North Atlantic. Biogeochemistry 124, (2015)

60. Willey, J. D. et al., The role of fossil fuel combustion on the stability of dissolved iron in rainwater. Atmos. Environ. 107, 187–193, (2015)

61. Hopwood, M. J., Statham, P. J. & Milani, A. Dissolved Fe(II) in a river-estuary system rich in dissolved organic matter. Estuar. Coast. Shelf Sci. 151, 1–9, (2014).

62. Hopwood, M. J., Statham, P. J., Tranter, M. & Wadham, J. L. Glacial flours as a potential source of Fe(II) and Fe(III) to polar waters. Biogeochemistry 118, 443–452, (2014)